A relative entropy for Ricci expanders

Joint work with Felix Schulze (Warwick University)
• Ricci flow on a closed manifold M^n, $n \geq 2$ (Hamilton, 82'):

$$\begin{cases} \frac{\partial}{\partial t} g(t) = -2 \text{Ric}(g(t)) \quad \text{on } M^n \times (0, T_{\text{max}}), \\ g(0) = g_0 \quad \text{on } M^n, \end{cases}$$

and its Kähler counterpart: $(M^{2n}, \omega(t))_{t \in (0, T_{\text{max}})}$, $\partial_t \omega = -\rho(\omega(t))$.

Two features of the Ricci flow:

- Instantaneous regularization: L^∞ perturbation of Euclidean space (Koch-Lamm, 11').
- Convergence to a canonical metric: Uniformisation of surfaces (Hamilton, 88', Chow, 91', Chen-Lu-Tian, 06'), Uniformisation of 3-manifolds with positive Ricci curvature (Hamilton, 82'), n-manifolds with 2-positive curvature operator (Böhm-Wilking, 06').
• Ricci flow on a closed manifold M^n, $n \geq 2$ (Hamilton, 82’):

$$\begin{align*}
\frac{\partial}{\partial t} g(t) &= -2 \text{Ric}(g(t)) \quad \text{on } M^n \times (0, T_{\text{max}}), \\
g(0) &= g_0 \quad \text{on } M^n,
\end{align*}$$

and its Kähler counterpart: $(M^{2n}, \omega(t))_{t \in (0, T_{\text{max}})}$, $\partial_t \omega = -\rho(\omega(t))$.

• Two features of the Ricci flow:
Introduction

- Ricci flow on a closed manifold M^n, $n \geq 2$ (Hamilton, 82'):
 \[
 \begin{cases}
 \frac{\partial}{\partial t} g(t) = -2 \text{Ric}(g(t)) & \text{on } M^n \times (0, T_{\text{max}}), \\
 g(0) = g_0 & \text{on } M^n,
 \end{cases}
 \]

 and its Kähler counterpart: $(M^{2n}, \omega(t))_{t \in (0, T_{\text{max}})}$, $\partial_t \omega = -\rho(\omega(t))$.

- Two features of the Ricci flow:
 - Instantaneous regularization:
 - Uniformisation of surfaces (Hamilton, 88', Chow, 91', Chen-Lu-Tian, 06'),
 - Uniformisation of 3-manifolds with positive Ricci curvature (Hamilton, 82'),
 - n-manifolds with 2-positive curvature operator (Böhm-Wilking, 06')...
Ricci flow on a closed manifold M^n, $n \geq 2$ (Hamilton, 82'):

\[
\begin{cases}
\frac{\partial}{\partial t} g(t) = -2 \text{Ric}(g(t)) & \text{on } M^n \times (0, T_{\text{max}}), \\
g(0) = g_0 & \text{on } M^n,
\end{cases}
\]

and its Kähler counterpart: $(M^{2n}, \omega(t))_{t \in (0, T_{\text{max}})}$, $\partial_t \omega = -\rho(\omega(t))$.

Two features of the Ricci flow:

- Instantaneous regularization:

 L^∞ perturbation of Euclidean space (Koch-Lamm, 11').
• Ricci flow on a closed manifold M^n, $n \geq 2$ (Hamilton, 82’):

\[
\begin{cases}
\frac{\partial}{\partial t} g(t) = -2 \text{Ric}(g(t)) & \text{on } M^n \times (0, T_{\text{max}}), \\
g(0) = g_0 & \text{on } M^n,
\end{cases}
\]

and its Kähler counterpart: $(M^{2n}, \omega(t))_{t \in (0, T_{\text{max}})}$, $\partial_t \omega = -\rho(\omega(t))$.

• Two features of the Ricci flow:

 • Instantaneous regularization:

 L^∞ perturbation of Euclidean space (Koch-Lamm, 11’).

 • Convergence to a canonical metric:
Ricci flow on a closed manifold M^n, $n \geq 2$ (Hamilton, 82'):

$$\begin{cases}
\frac{\partial}{\partial t} g(t) = -2 \text{Ric}(g(t)) & \text{on } M^n \times (0, T_{\text{max}}), \\
g(0) = g_0 & \text{on } M^n,
\end{cases}$$

and its Kähler counterpart: $(M^{2n}, \omega(t))_{t \in (0, T_{\text{max}})}$, $\partial_t \omega = -\rho(\omega(t))$.

Two features of the Ricci flow:

- Instantaneous regularization:

 L^∞ perturbation of Euclidean space (Koch-Lamm, 11').

- Convergence to a canonical metric:

 Uniformisation of surfaces (Hamilton, 88', Chow, 91', Chen-Lu-Tian, 06').
Ricci flow on a closed manifold M^n, $n \geq 2$ (Hamilton, 82'):

$$\begin{cases} \frac{\partial}{\partial t} g(t) = -2 \text{Ric}(g(t)) & \text{on } M^n \times (0, T_{\text{max}}), \\ g(0) = g_0 & \text{on } M^n, \end{cases}$$

and its Kähler counterpart: $(M^{2n}, \omega(t))_{t \in (0, T_{\text{max}})}$, $\partial_t \omega = -\rho(\omega(t))$.

Two features of the Ricci flow:

- Instantaneous regularization:

 L^∞ perturbation of Euclidean space (Koch-Lamm, 11').

- Convergence to a canonical metric:

 - Uniformisation of surfaces (Hamilton, 88', Chow, 91', Chen-Lu-Tian, 06'),

 - Uniformisation of 3-manifolds with positive Ricci curvature (Hamilton, 82'), n-manifolds with 2-positive curvature operator (Böhm-Wilking, 06')...
Main questions

- Can isolated singularities be smoothed out instantaneously?
Main questions

- Can isolated singularities be smoothed out instantaneously?
 - In dimension 3: finite-time singularities (Type I) are modelled on shrinkers $S^3, S^2 \times \mathbb{R}$.
Main questions

- Can isolated singularities be smoothed out instantaneously?
 - In dimension 3: finite-time singularities (Type I) are modelled on shrinkers \mathbb{S}^3, $\mathbb{S}^2 \times \mathbb{R}$.
 - In dimension 4: Existence of asymptotically conical Kähler shrinkers on $L^{-1} \rightarrow \mathbb{C}P^1$ (Feldman-Ilmanen-Knopf, 03').
Main questions

- Can isolated singularities be smoothed out instantaneously?
 - In dimension 3: finite-time singularities (Type I) are modelled on shrinkers \mathbb{S}^3, $\mathbb{S}^2 \times \mathbb{R}$.
 - In dimension 4: Existence of asymptotically conical Kähler shrinkers on $L^{-1} \to \mathbb{C}P^1$ (Feldman-Ilmanen-Knopf, 03').

Question

How can (expanding) solitons help to reverse this process?
Main questions

- Can isolated singularities be smoothed out instantaneously?
 - In dimension 3: finite-time singularities (Type I) are modelled on shrinkers S^3, $S^2 \times \mathbb{R}$.
 - In dimension 4: Existence of asymptotically conical Kähler shrinkers on $L^{-1} \to \mathbb{C}P^1$ (Feldman-Ilmanen-Knopf, 03').

Question

How can (expanding) solitons help to reverse this process?

Parabolic version of [Anderson, Bando-Kasue-Nakajima]'s problem on Einstein metrics
<table>
<thead>
<tr>
<th>Definition (Time-dependent definition)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>An expanding gradient Ricci soliton is an immortal solution $(g(t))_{t>0}$ to the Ricci flow such that</td>
<td></td>
</tr>
<tr>
<td>$g(t) = t \varphi^*_t g$, $\partial_t \varphi_t = - t^{-1} \nabla g \circ \varphi_t$, $t > 0$, $\varphi_t</td>
<td>_{t=1} = \text{Id}_M$,</td>
</tr>
<tr>
<td>for some smooth potential function $f : M \to \mathbb{R}$.</td>
<td></td>
</tr>
</tbody>
</table>
Main definitions

Definition (Time-dependent definition)

An expanding gradient Ricci soliton is an immortal solution \((g(t))_{t>0}\) to the Ricci flow such that

\[
g(t) = t\varphi_t^* g, \quad \partial_t \varphi_t = -t^{-1} \nabla g f \circ \varphi_t, \quad t > 0, \quad \varphi_t \big|_{t=1} = \text{Id}_M,
\]

for some smooth potential function \(f : M \to \mathbb{R}\).

Definition (Static definition)

An expanding gradient Ricci soliton (E.G.S.) is a triple \((M^n, g, \nabla g f)\) satisfying:

\[
\text{Ric}(g) - \nabla g.f = -\frac{g}{2},
\]

Bakry-Émery tensor.

Joint work with Felix Schulze (Warwick University)
Main definitions

Definition (Time-dependent definition)

An expanding gradient Kähler Ricci soliton is an immortal solution \((g(t))_{t>0}\) to the Kähler-Ricci flow such that

\[
g(t) = t\varphi_t^*g, \quad \partial_t \varphi_t = -t^{-1}\nabla g f \circ \varphi_t, \quad t > 0, \quad \varphi_t|_{t=1} = \text{Id}_M,
\]

for some smooth potential function \(f : M \to \mathbb{R}\).

Definition (Static definition)

An expanding gradient Kähler-Ricci soliton (E.G.S.) is a triple \((M^n, g, \nabla g f) (\mathbb{M}^{2n}, \omega, \nabla g f)\) satisfying:

\[
\text{Ric}(g) - \nabla g.2f = -\frac{g}{2},
\]

Bakry-Émery tensor

\[
\rho(\omega) - \frac{1}{2} \mathcal{L}_X(\omega) = -\omega \quad \text{and} \quad X := \nabla g f \text{ real holomorphic}.
\]
Main definitions

Definition (Time-dependent definition)

An expanding gradient \(\text{Kähler} \) Ricci soliton is an immortal solution \((g(t))_{t>0}\) to the \(\text{Kähler} \)-Ricci flow such that

\[
g(t) = t\varphi_t^*g, \quad \partial_t \varphi_t = -t^{-1}\nabla g f \circ \varphi_t, \quad t > 0, \quad \varphi_t \big|_{t=1} = \text{Id}_M,
\]

for some smooth potential function \(f : M \rightarrow \mathbb{R} \).

Definition (Static definition)

An expanding gradient \(\text{Kähler-Ricci} \) soliton (E.G.S.) is a triple \((M^n, g, \nabla g f)\) \((M^{2n}, \omega, \nabla g f)\) satisfying:

\[
\begin{align*}
\text{Ric}(g) - \nabla g^{-2} f &= -\frac{g}{2}, \\
\text{Bakry-Émery tensor}
\end{align*}
\]

\[
\rho(\omega) - \frac{1}{2} \mathcal{L}_X(\omega) = -\omega \quad \text{and } X := \nabla g f \text{ real holomorphic.}
\]

If \(M \) is closed and \((M^n, g, \nabla g f)\) is an E.G.S. then \(\nabla g f = 0 \).

Joint work with Felix Schulze (Warwick University)
Main asymptotically conical examples

1. The Gaussian expanding gradient Ricci soliton \((\mathbb{R}^n, g_{\text{eucl}}, \frac{1}{2} r \partial_r)\), \(\varphi_t(x) = \frac{x}{\sqrt{t}}\), \(t > 0\), and its Kähler counterpart: \((\mathbb{C}^n, i \partial \bar{\partial} \cdot |^2, r \partial_r)\).
Main asymptotically conical examples

1. The Gaussian expanding gradient Ricci soliton \((\mathbb{R}^n, g_{eucl}, \frac{1}{2} r \partial r), \varphi_t(x) = \frac{x}{\sqrt{t}}, t > 0\), and its Kähler counterpart: \((\mathbb{C}^n, i\partial \bar{\partial} \cdot |^2, r \partial r)\).

2. (Bryant, unpublished notes, 00’s)
The Gaussian expanding gradient Ricci soliton \((\mathbb{R}^n, g_{eucl}, \frac{1}{2} r \partial r) \), \(\varphi_t(x) = \frac{x}{\sqrt{t}} \), \(t > 0 \), and its Kähler counterpart: \((\mathbb{C}^n, i \partial \bar{\partial} \cdot |^2, r \partial r) \).

(Bryant, unpublished notes, 00’s)

A one-parameter family of E.G.S. \((\mathbb{R}^n, g_c, \nabla^c f_c)_{c \in (0,1)} \), \(SO(n - 1) \)-invariant, \(\text{Rm}(g_c) > 0 \), and asymptotic to \((C(S^{n-1}), dr^2 + (cr)^2 g_{S^{n-1}}, \frac{1}{2} r \partial r) \).
Main asymptotically conical examples

1. The Gaussian expanding gradient Ricci soliton \((\mathbb{R}^n, g_{eucl}, \frac{1}{2} r \partial_r), \varphi_t(x) = \frac{x}{\sqrt{t}}, t > 0\), and its Kähler counterpart: \((\mathbb{C}^n, i \partial \bar{\partial} | \cdot |^2, r \partial_r)\).

2. (Bryant, unpublished notes, 00’s)

 A one-parameter family of E.G.S. \((\mathbb{R}^n, g_c, \nabla g_c f_c)_{c \in (0,1)}, \text{SO}(n - 1)\)-invariant, \(\text{Rm}(g_c) > 0\), and asymptotic to \((C(S^{n-1}), dr^2 + (cr)^2 g_{S^{n-1}}, \frac{1}{2} r \partial_r)\).

3. (Feldman-Ilmanen-Knopf, 03’)

Joint work with Felix Schulze (Warwick University)
Main asymptotically conical examples

1. The Gaussian expanding gradient Ricci soliton \((\mathbb{R}^n, g_{eucl}, \frac{1}{2} r \partial_r), \varphi_t(x) = \frac{x}{\sqrt{t}}, t > 0\), and its Kähler counterpart: \((\mathbb{C}^n, i \partial \overline{\partial} \cdot |^2, r \partial_r)\).

2. (Bryant, unpublished notes, 00’s)

A one-parameter family of E.G.S. \((\mathbb{R}^n, g_c, \nabla^{g_c} f_c)_{c \in (0,1)}, \text{SO}(n-1)-\text{invariant, } \text{Rm}(g_c) > 0, \text{and asymptotic to } (C(S^{n-1}), dr^2 + (cr)^2 g_{S^{n-1}}, \frac{1}{2} r \partial_r)\).

3. (Feldman-Ilmanen-Knopf, 03’)

A two-parameter family of U(n)-invariant Kähler E.G.S. on \(L^{-k} \to \mathbb{CP}^{n-1}, k > n\),
Main asymptotically conical examples

1. The Gaussian expanding gradient Ricci soliton \((\mathbb{R}^n, g_{eucl}, \frac{1}{2} r \partial r)\), \(\varphi_t(x) = \frac{x}{\sqrt{t}}\), \(t > 0\), and its Kähler counterpart: \((\mathbb{C}^n, i \partial \bar{\partial} | \cdot |^2, r \partial_r)\).

2. (Bryant, unpublished notes, 00’s)

A one-parameter family of E.G.S. \((\mathbb{R}^n, g_c, \nabla^{g_c} f_c)\) \(c \in (0,1)\), \(SO(n-1)\)-invariant, \(\text{Rm}(g_c) > 0\), and asymptotic to \((C(S^{n-1}), dr^2 + (cr)^2 g_{S^{n-1}}, \frac{1}{2} r \partial_r)\).

3. (Feldman-Illmanen-Knopf, 03’)

A two-parameter family of \(U(n)\)-invariant Kähler E.G.S. on \(L^{-k} \rightarrow \mathbb{CP}^{n-1}\), \(k > n\), asymptotic to \(\left(C(S^{2n-1}/\mathbb{Z}_k) , i \partial \bar{\partial} \left(| \cdot |^{2p} / p \right) , r \partial_r \right)\), \(p > 0\).
Main asymptotically conical examples

1 The Gaussian expanding gradient Ricci soliton \((\mathbb{R}^n, g_{\text{eucl}}, \frac{1}{2} r \partial_r), \varphi_t(x) = \frac{x}{\sqrt{t}}, t > 0\), and its Kähler counterpart: \((\mathbb{C}^n, i \partial \overline{\partial} | \cdot |^2, r \partial_r)\).

2 (Bryant, unpublished notes, 00’s)

A one-parameter family of E.G.S. \((\mathbb{R}^n, g_c, \nabla^c f_c)_{c \in (0,1)}, \text{SO}(n - 1)-\text{invariant}, \text{Rm}(g_c) > 0\), and asymptotic to \((C(S^{n-1}), dr^2 + (cr)^2 g_{S^{n-1}}, \frac{1}{2} r \partial_r)\).

3 (Feldman-Ilmanen-Knopf, 03’)

A two-parameter family of \(U(n)\)-invariant Kähler E.G.S. on \(L^{-k} \to \mathbb{C}P^{n-1}, k > n\), asymptotic to \((C(S^{2n-1}/\mathbb{Z}_k), i \partial \overline{\partial} \left(\frac{|\cdot|^{2p}}{p}\right) , r \partial_r)\), \(p > 0\).

\(p = 1\): ALE metrics with exponential rate and \(\text{R}(g_{k,1}) > 0\).

Joint work with Felix Schulze (Warwick University)
Main interest

- Generalization of (Kähler)-Einstein metrics.
Main interest

- Generalization of (Kähler)-Einstein metrics.

- Intuition on arbitrary immortal Type III solutions ($|Rm(g(t))|_{g(t)} \leq C/t$):

 Hamilton's Matrix Harnack estimate (Hamilton, 93′):
 \[
 \partial_t R_{g(t)} + R_{g(t)} t + 2 \text{Ric}_{g(t)}(V, V) + 2 \langle \nabla_{g(t)} R_{g(t)}, V \rangle \geq 0, \ V \in TM.
 \]

 Candidates for smoothing isolated singularities out instantaneously.

 \[\Rightarrow\] produces a complete solution going through the singularities eventually.

 [Gianniotis-Schulze, 16′]: existence of complete solutions of the Ricci flow starting from closed manifolds with isolated singularities modeled on cones with non-negative curvature operator.

 [Kröncke-Vertman, 18′]: existence of the (DeTurck)-Ricci flow from closed manifolds with isolated singularities modelled on “strictly stable” Ricci flat cones.

 Feldman-Ilmanen-Knopf examples
Main interest

- Generalization of (Kähler)-Einstein metrics.

- Intuition on arbitrary immortal Type III solutions ($|\text{Rm}(g(t))|_{g(t)} \leq C/t$):

 Hamilton’s Matrix Harnack estimate (Hamilton, 93’s): if $\text{Rm}(g(t)) \geq 0$,

 \[
 \partial_t R_{g(t)} + \frac{R_{g(t)}}{t} + 2 \text{Ric}(g(t))(V, V) + 2 \langle \nabla_{g(t)} R_{g(t)}, V \rangle \geq 0, \quad V \in TM.
 \]
Main interest

- Generalization of (Kähler)-Einstein metrics.

- Intuition on arbitrary immortal Type III solutions ($| \text{Rm}(g(t))|_{g(t)} \leq C/t$):

 Hamilton’s Matrix Harnack estimate (Hamilton, 93’s): if $\text{Rm}(g(t)) \geq 0$,
 \[
 \partial_t \text{R}_g(t) + \frac{\text{R}_g(t)}{t} + 2 \text{Ric}(g(t))(V, V) + 2(\nabla g(t) \text{R}_g(t), V) \geq 0, \quad V \in TM.
 \]

- Candidates for smoothing isolated singularities out instantaneously.

\[\text{Joint work with Felix Schulze (Warwick University)}\]

\[\text{A relative entropy for Ricci expanders}\]
Main interest

- Generalization of (Kähler)-Einstein metrics.

- Intuition on arbitrary immortal Type III solutions ($|\text{Rm}(g(t))|_{g(t)} \leq C/t$):

 Hamilton’s Matrix Harnack estimate (Hamilton, 93’s): if $\text{Rm}(g(t)) \geq 0$,
 $$\frac{\partial_t}{t} R_{g(t)} + \frac{R_{g(t)}}{t} + 2 \text{Ric}(g(t))(V, V) + 2 \left< \nabla_{g(t)} R_{g(t)}, V \right> \geq 0, \quad V \in TM.$$

- Candidates for smoothing isolated singularities out instantaneously.

 \Rightarrow produces a complete solution going through the singularities eventually.
Main interest

- Generalization of (Kähler)-Einstein metrics.

- Intuition on arbitrary immortal Type III solutions ($|\text{Rm}(g(t))|_{g(t)} \leq \frac{C}{t}$):

 Hamilton’s Matrix Harnack estimate (Hamilton, 93’s): if $\text{Rm}(g(t)) \geq 0$,

 $$\partial_t R_g(t) + \frac{R_g(t)}{t} + 2 \text{Ric}(g(t))(V, V) + 2\langle \nabla^g(t) R_g(t), V \rangle \geq 0, \quad V \in TM.$$

- Candidates for smoothing isolated singularities out instantaneously.

 \Rightarrow produces a complete solution going through the singularities eventually.

 [Gianniotis-Schulze, 16’]: existence of complete solutions of the Ricci flow starting from closed manifolds with isolated singularities modeled on cones with non-negative curvature operator.
Main interest

- Generalization of (Kähler)-Einstein metrics.

- Intuition on arbitrary immortal Type III solutions ($|\text{Rm}(g(t))|_{g(t)} \leq C/t$):

 Hamilton’s Matrix Harnack estimate (Hamilton, 93’s): if $\text{Rm}(g(t)) \geq 0$,

 $$\partial_t R_{g(t)} + \frac{R_{g(t)}}{t} + 2 \text{Ric}(g(t))(V, V) + 2\langle \nabla^{g(t)} R_{g(t)}, V \rangle \geq 0, \quad V \in TM.$$

- Candidates for smoothing isolated singularities out instantaneously.

 \Rightarrow produces a complete solution going through the singularities eventually.

[Gianniotis-Schulze, 16‘]: existence of complete solutions of the Ricci flow starting from closed manifolds with isolated singularities modeled on cones with non-negative curvature operator.

\perp [Kröncke-Vertman, 18‘]: existence of the (DeTurck)-Ricci flow from closed manifolds with isolated singularities modelled on ”strictly stable” Ricci flat cones.
Main interest

- Generalization of (Kähler)-Einstein metrics.

- Intuition on arbitrary immortal Type III solutions \(| Rm(g(t))|_{g(t)} \leq C/t \):

 Hamilton’s Matrix Harnack estimate (Hamilton, 93’s): if \(Rm(g(t)) \geq 0 \),

 \[
 \partial_t R_g(t) + \frac{R_g(t)}{t} + 2 \text{Ric}(g(t))(V, V) + 2 \langle \nabla^{g(t)} R_g(t), V \rangle \geq 0, \quad V \in TM.
 \]

- Candidates for smoothing isolated singularities out instantaneously.

 \[\Rightarrow\] produces a complete solution going through the singularities eventually.

 [Gianniotis-Schulze, 16’]: existence of complete solutions of the Ricci flow starting from closed manifolds with isolated singularities modeled on cones with non-negative curvature operator.

 [Kröncke-Vertman, 18’]: existence of the (DeTurck)-Ricci flow from closed manifolds with isolated singularities modelled on ”strictly stable” Ricci flat cones.

 Feldman-Ilmanen-Knopf examples
Main questions

1. Given a metric cone over a smooth Riemannian link, how many self-similar solutions come out of it?

2. Existence: Dirichlet problem at infinity.

3. Uniqueness: Given two self-similar solutions coming out of the same metric cone, under which (geometric) assumption are they isometric?

[Angenent-Knopf, 1999] There are Ricci flat cones (dim. \(\geq 5 \)) admitting non-isometric complete expanding self-similar evolutions.

In the setting of Ricci shrinkers, the tangent cone at infinity determines the soliton metric: [Kotschwar-Wang, 2013']

Joint work with Felix Schulze (Warwick University): A relative entropy for Ricci expanders
Main questions

1. Given a metric cone over a smooth Riemannian link, how many self-similar solutions come out of it?

 - Asymptotic cone = initial condition for an EGS \((M, g, \nabla^g f)\):

2. Existence: Dirichlet problem at infinity.

3. Uniqueness: Given two self-similar solutions coming out of the same metric cone, under which (geometric) assumption are they isometric?

 - [Angenent-Knopf, 1999] There are Ricci flat cones (dim. \(\geq 5\)) admitting non-isometric complete expanding self-similar evolutions.

 - In the setting of Ricci shrinkers, the tangent cone at infinity determines the soliton metric: [Kotschwarr-Wang, 2013']

Joint work with Felix Schulze (Warwick University)
Main questions

1. Given a metric cone over a smooth Riemannian link, how many self-similar solutions come out of it?

 - Asymptotic cone = initial condition for an EGS $(M, g, \nabla^g f)$:

 For $t > 0$, $(M, g(t), p) = (M, t\varphi^*_t g, p) \cong (M, tg, \varphi_t(p)) = (M, tg, p)$,

 as isometric pointed metric spaces.
Given a metric cone over a smooth Riemannian link, how many self-similar solutions come out of it?

- Asymptotic cone = initial condition for an EGS \((M, g, \nabla^g f)\):

 For \(t > 0\), \((M, g(t), p) = (M, t\varphi_t^* g, p)\) \(\cong\) \((M, tg, \varphi_t(p)) = (M, tg, p)\),

 if \(p \in \text{Crit}(f)\).
Main questions

1. Given a metric cone over a smooth Riemannian link, how many self-similar solutions come out of it?

 - Asymptotic cone = initial condition for an EGS \((M, g, \nabla^g f)\):

 For \(t > 0\), \((M, g(t), p) = (M, t\varphi_t^* g, p) \cong (M, tg, \varphi_t(p)) = (M, tg, p)\),

 if \(p \in \text{Crit}(f)\).

2. Existence: Dirichlet problem at infinity.

Existence: Dirichlet problem at infinity.
Main questions

1. Given a metric cone over a smooth Riemannian link, how many self-similar solutions come out of it?

 - Asymptotic cone = initial condition for an EGS \((M, g, \nabla^g f)\):

 For \(t > 0\), \((M, g(t), p) = (M, t\varphi_t^*g, p) \cong (M, t\varphi_t, \varphi_t(p)) = (M, t\varphi, p),\)

 if \(p \in \text{Crit}(f)\).

2. Existence: Dirichlet problem at infinity.

3. Uniqueness:
Main questions

1. Given a metric cone over a smooth Riemannian link, how many self-similar solutions come out of it?
 - Asymptotic cone = initial condition for an EGS \((M, g, \nabla^g f)\):

 For \(t > 0, (M, g(t), p) = (M, t\varphi_t^*g, p) \approx (M, tg, \varphi_t(p)) = (M, tg, p), \)
 as isometric pointed metric spaces
 if \(p \in \text{Crit}(f) \).

2. Existence: Dirichlet problem at infinity.

3. Uniqueness:

 Given two self-similar solutions coming out of the same metric cone, under which (geometric) assumption are they isometric?
Main questions

1. Given a metric cone over a smooth Riemannian link, how many self-similar solutions come out of it?

 - Asymptotic cone = initial condition for an EGS \((M, g, \nabla^g f)\):

 \[\text{For } t > 0, (M, g(t), p) = (M, t\varphi^*_t g, p) \sim (M, tg, \varphi_t(p)) = (M, tg, p), \]

 as isometric pointed metric spaces

 if \(p \in \text{Crit}(f) \).

2. Existence: Dirichlet problem at infinity.

3. Uniqueness:

 Given two self-similar solutions coming out of the same metric cone, under which (geometric) assumption are they isometric?

 [Angenent-Knopf, 19’] There are Ricci flat cones (dim. \(\geq 5 \)) admitting non-isometric complete expanding self-similar evolutions.
Main questions

1. Given a metric cone over a smooth Riemannian link, how many self-similar solutions come out of it?

 - Asymptotic cone = initial condition for an EGS \((M, g, \nabla^g f)\):

 For \(t > 0\), \((M, g(t), p) = (M, t\varphi_t^* g, p) \cong (M, tg, \varphi_t(p)) = (M, tg, p)\),

 as isometric pointed metric spaces

 if \(p \in \text{Crit}(f)\).

2. Existence: Dirichlet problem at infinity.

3. Uniqueness:

 Given two self-similar solutions coming out of the same metric cone, under which (geometric) assumption are they isometric?

 [Angenent-Knopf, 19′] There are Ricci flat cones (dim. \(\geq 5\)) admitting non-isometric complete expanding self-similar evolutions.

 In the setting of Ricci shrinkers, the tangent cone at infinity determines the soliton metric:

 [Kotschwarr-Wang, 13′]
Theorem (Conlon-D’, 16’, Conlon-D’-Sun, 19’)

Let \((C_0, J_0, g_0, r \partial_r)\) be a Kähler cone. Then the following assertions are equivalent:

1. There exists a unique complete expanding gradient Kähler-Ricci soliton \((M, J, g, X)\) such that
 \[
 \nabla g, k R_{m}(g) = O(r^{-2-k}),
 \]
 with asymptotic cone \((C_0, g_0)\).

2. \(C_0\) admits a smooth resolution \(\pi: M \to C_0\) such that the canonical line bundle
 \(K_M|_E\) is \(\pi\)-ample, i.e.
 \[
 c_1(K_M|_E) > 0,
 \]
 if \(E = \pi^{-1}(\{0\})\) denotes the exceptional set.

Such a resolution \(\pi: M \to C_0\) satisfies:

\[
\nabla g, k (\pi^* g - g_0 - \text{Ric}(g_0)) = O(r^{-4-k})
\]
for all \(k \geq 0\).

Joint work with Felix Schulze (Warwick University)
The Kähler case

Theorem (Conlon-D', 16′, Conlon-D'-Sun, 19′)

Let \((C_0, J_0, g_0, r \partial_r)\) be a Kähler cone. Then the following assertions are equivalent:

1. There exists a unique complete expanding gradient Kähler-Ricci soliton \((M^{2n}, J, g, X)\) such that

\[
\nabla^{g,k} \mathrm{Rm}(g) = O(r^{-2-\varepsilon}), \quad k \geq 0,
\]

with asymptotic cone \((C_0, g_0)\).

Joint work with Felix Schulze (Warwick University)

A relative entropy for Ricci expanders
The Kähler case

Theorem (Conlon-D’, 16’, Conlon-D’-Sun, 19’)

Let \((C_0, J_0, g_0, r\partial_r)\) be a Kähler cone. Then the following assertions are equivalent:

1. **There exists a unique complete expanding gradient Kähler-Ricci soliton** \((M^{2n}, J, g, X)\) such that

\[
\nabla^g k \, \text{Rm}(g) = O(r^{-2-k}), \quad k \geq 0,
\]

with asymptotic cone \((C_0, g_0)\).

2. **\(C_0\) admits a smooth resolution** \(\pi : M \to C_0\) such that the canonical line bundle \(K_M|_E\) is \(\pi\)-ample, i.e. \(c_1(K_M|_E) > 0\), if \(\pi^{-1}(\{0\}) =: E\) denotes the exceptional set.

Joint work with Felix Schulze (Warwick University)
The Kähler case

Theorem (Conlon-D’, 16’, Conlon-D’-Sun, 19’)

Let \((C_0, J_0, g_0, r\partial_r)\) be a Kähler cone. Then the following assertions are equivalent:

1. There exists a unique complete expanding gradient Kähler-Ricci soliton \((M^{2n}, J, g, X)\) such that
 \[
 \nabla g^k \text{Rm}(g) = O(r^{-2-k}), \quad k \geq 0,
 \]
 with asymptotic cone \((C_0, g_0)\).

2. \(C_0\) admits a smooth resolution \(\pi : M \to C_0\) such that the canonical line bundle \(K_M|_E\) is \(\pi\)-ample, i.e. \(c_1(K_M|_E) > 0\), if \(\pi^{-1}(\{0\}) =: E\) denotes the exceptional set.

Such a resolution \(\pi : M \to C_0\) satisfies:
The Kähler case

Theorem (Conlon-D’, 16’, Conlon-D’-Sun, 19’)

Let \((C_0, J_0, g_0, r\partial_r)\) be a Kähler cone. Then the following assertions are equivalent:

1. There exists a unique complete expanding gradient Kähler-Ricci soliton \((M^{2n}, J, g, X)\) such that

\[
\nabla^{g,k} \text{Rm}(g) = O(r^{-2-k}), \quad k \geq 0,
\]

with asymptotic cone \((C_0, g_0)\).

2. \(C_0\) admits a smooth resolution \(\pi : M \to C_0\) such that the canonical line bundle \(K_M|_E\) is \(\pi\)-ample, i.e. \(c_1(K_M|_E) > 0\), if \(\pi^{-1}({\{0\}}) =: E\) denotes the exceptional set.

Such a resolution \(\pi : M \to C_0\) satisfies:

- \(d\pi(X) = r\partial_r\) and \(\nabla^{g_0,k} (\pi_* g - g_0 - \text{Ric}(g_0)) = O(r^{-4-k})\) for all \(k \geq 0\).
The Kähler case

Theorem (Conlon-D’, 16’, Conlon-D’-Sun, 19’)

Let \((C_0, J_0, g_0, r\partial_r)\) be a Kähler cone. Then the following assertions are equivalent:

1. There exists a unique complete expanding gradient Kähler-Ricci soliton \((M^{2n}, J, g, X)\) such that
 \[
 \nabla g^k \text{Rm}(g) = O(r^{-2-k}), \quad k \geq 0,
 \]
 with asymptotic cone \((C_0, g_0)\).

2. \(C_0\) admits a smooth resolution \(\pi : M \to C_0\) such that the canonical line bundle \(K_M|_E\) is \(\pi\)-ample, i.e. \(c_1(K_M|_E) > 0\), if \(\pi^{-1}(\{0\}) =: E\) denotes the exceptional set.

Such a resolution \(\pi : M \to C_0\) satisfies:

- \(d\pi(X) = r\partial_r\) and \(\nabla^{g_0,k} (\pi^* g - g_0 - \text{Ric}(g_0)) = O(r^{-4-k})\) for all \(k \geq 0\).

- the torus action on \(C_0\) generated by \(J_0(r\partial_r)\) extends to a holomorphic isometric action on \((M, J, g)\).

Joint work with Felix Schulze (Warwick University)
Theorem (D’-Schulze, 21’)

Let \((M^n, g_i, \nabla^g_i f_i), i = 1, 2\) be two expanding gradient Ricci solitons coming out of the same cone \((C(S), g_C := dr^2 + r^2 g_S, \frac{r}{2} \partial_r)\) over a smooth link \((S, g_S)\).
Theorem (D’-Schulze, 21’)

Let \((M^n, g_i, \nabla^{g_i} f_i), \ i = 1, 2\) be two expanding gradient Ricci solitons coming out of the same cone \((C(S), g_C := dr^2 + r^2 g_S, \frac{r}{2} \partial_r)\) over a smooth link \((S, g_S)\).

(Suitable Gauge) The soliton metrics \(g_1\) and \(g_2\) are such that their soliton vector fields coincide outside a compact set.
Theorem (D’-Schulze, 21’)

Let \((M^n, g_i, \nabla^g_i f_i)\), \(i = 1, 2\) be two expanding gradient Ricci solitons coming out of the same cone \((C(S), g_C := dr^2 + r^2 g_S, \frac{r}{2} \partial_r)\) over a smooth link \((S, g_S)\).

(Suitable Gauge) The soliton metrics \(g_1\) and \(g_2\) are such that their soliton vector fields coincide outside a compact set.

Then the trace at infinity

\[
\lim_{r \to +\infty} r^n e^{\frac{r^2}{4}} (g_1 - g_2) =: \text{tr}_\infty \left(r^n e^{\frac{r^2}{4}} (g_1 - g_2) \right)
\]

exists in the \(L^2_{\text{loc}}(C(S))\)-topology, it preserves the radial vector field \(\partial_r\) and its tangential part is divergence free with respect to the metric on the link in the weak sense.

Joint work with Felix Schulze (Warwick University)
Theorem (D’-Schulze, 21’)

Let \((M^n, g_i, \nabla^{g_i} f_i)\), \(i = 1, 2\) be two expanding gradient Ricci solitons coming out of the same cone \((C(S), g_C := dr^2 + r^2 g_S, \frac{r}{2} \partial_r)\) over a smooth link \((S, g_S)\).

(Suitable Gauge) The soliton metrics \(g_1\) and \(g_2\) are such that their soliton vector fields coincide outside a compact set.

Then the trace at infinity

\[
\lim_{r \to +\infty} r^n e^{\frac{r^2}{4}} (g_1 - g_2) =: \text{tr}_\infty \left(r^n e^{\frac{r^2}{4}} (g_1 - g_2) \right)
\]

exists in the \(L^2_{\text{loc}}(C(S))\)-topology, it preserves the radial vector field \(\partial_r\) and its tangential part is divergence free with respect to the metric on the link in the weak sense.

Moreover, \(g_1\) and \(g_2\) coincide pointwise outside a compact set if and only if their associated trace at infinity vanishes, i.e.

\[
\text{tr}_\infty \left(r^n e^{\frac{r^2}{4}} (g_1 - g_2) \right) \equiv 0.
\]
Some ideas of the proof

Previous unique continuation result when the cone is Ricci flat: [D', 16']
Some ideas of the proof

Previous unique continuation result when the cone is Ricci flat: [D’, 16’]

Here, the convergence holds in the pointwise sense: proof based on Carleman estimates in the spirit of (Donnelly, 99’)

Assume \(\nabla g_2 f_2 = \nabla g_1 f_1 \) at infinity and define \(h := g_2 - g_1 \):

\[
\Delta g_1 h + \nabla g_1 \nabla g_1 f_1 h = R[h] + L_B(h)(g_1),
\]

\(B(h) := \text{div} g_1 h - \frac{1}{2} \nabla g_1 \text{tr} g_1 h \).

\[
\Rightarrow \text{degenerate elliptic equation.}
\]

\[
\Delta g_1 + \nabla g_1 \nabla g_1 f_1 \text{is asymptotic to } (\Delta g_{\text{cone}} + \frac{1}{2} r \partial r) \text{ and conjugate to a harmonic oscillator.}
\]

(Kotschwar, 17’)

If \(h(t) = t \phi \ast t(g_2 - g_1) \), \(B(h(t)) \) satisfies an ODE, i.e.

\[
\nabla g_1 \nabla g_1 f_1 B(h) - B(h)^2 = R[h].
\]

Based on Bianchi identity:

\[
B(Ric(g_i)) = 0.
\]
Some ideas of the proof

Previous unique continuation result when the cone is Ricci flat: [D’, 16’]

Here, the convergence holds in the pointwise sense: proof based on Carleman estimates in the spirit of (Donnelly, 99’)

Reminiscent of (Mazzeo, 91’) and (Biquard, 08’) for conformally compact Einstein metrics

A priori, $g_i - g_{cone} = \text{Ric}(g_{cone}) + O(r^{-4})$ only $\Rightarrow g^2 - g^1 = O(r^{-4}).$

Assume $\nabla g^2 f^2 = \nabla g^1 f^1$ at infinity and define $h := g^2 - g^1$:

$\Delta g^1 h + \nabla g^1 \nabla g^1 f^1 h = R[h] + B(h)(g^1)$,

$B(h) := \text{div} g^1 h - \frac{1}{2} \nabla g^1 \text{tr} g^1 h$.

\Rightarrow degenerate elliptic equation.

$\Delta g^1 + \nabla g^1 \nabla g^1 f^1$ is asymptotic to $(\Delta g_{cone} + \frac{1}{2} r \partial_r)$ and conjugate to a harmonic oscillator.

(Kotschwar, 17’) If $h(t) := t^\phi \ast t(g^2 - g^1)$, $B(h(t))$ satisfies an ODE, i.e.

$\nabla g^1 \nabla g^1 f^1 B(h) - B(h)^2 = R[h]$.

Based on Bianchi identity:

$B(\text{Ric}(g^i)) = 0$.

Joint work with Felix Schulze (Warwick University)

A relative entropy for Ricci expanders
Some ideas of the proof

Previous unique continuation result when the cone is Ricci flat: [D’, 16’]

Here, the convergence holds in the pointwise sense: proof based on Carleman estimates in the spirit of (Donnelly, 99’)

Reminiscent of (Mazzeo, 91’) and (Biquard, 08’) for conformally compact Einstein metrics

In general,

\[\Delta g^1 h + \nabla g^1 \nabla g^1 f_1 h = R[h] + L_B(h)(g^1), \]

where \(B(h) := \text{div}_{g^1} h - \frac{1}{2} \nabla_{g^1} \text{tr}_{g^1} h. \)

⇒ degenerate elliptic equation.

\[\Delta g^1 + \nabla g^1 \nabla g^1 f_1 \text{is asymptotic to } \left(\Delta g^\text{cone} + \frac{1}{2} r \partial_r \right) \text{ and conjugate to a harmonic oscillator.} \]

(Kotschwar, 17’)

If \(h(t) := t \phi_t^* t(g^2 - g^1), \) \(B(h(t)) \) satisfies an ODE, i.e.

\[\nabla g^1 \nabla g^1 f_1 B(h) - B(h)^2 = R[h]. \]

Based on Bianchi identity:

\[B(Ric(g^1)) = 0. \]
Some ideas of the proof

Previous unique continuation result when the cone is Ricci flat: \([D', 16']\)

Here, the convergence holds in the pointwise sense: proof based on Carleman estimates in the spirit of (Donnelly, 99')

Reminiscent of (Mazzeo, 91') and (Biquard, 08') for conformally compact Einstein metrics

In general,

- A priori, \(g_i - g_{\text{cone}} = \text{Ric}(g_{\text{cone}}) + O(r^{-4})\) only \(\Rightarrow g_2 - g_1 = O(r^{-4}).\)
Some ideas of the proof

Previous unique continuation result when the cone is Ricci flat: [D’, 16’]

Here, the convergence holds in the pointwise sense: proof based on Carleman estimates in the spirit of (Donnelly, 99’)

Reminiscent of (Mazzeo, 91’) and (Biquard, 08’) for conformally compact Einstein metrics

In general,

- A priori, $g_i - g_{cone} = \text{Ric}(g_{cone}) + O(r^{-4})$ only $\Rightarrow g_2 - g_1 = O(r^{-4})$.

- Assume $\nabla^{g_2} f_2 = \nabla^{g_1} f_1$ at infinity and define $h := g_2 - g_1$:

 $$\Delta_{g_1} h + \nabla_{\nabla^{g_1} f_1} h = R[h] + L_{\mathcal{B}(h)}(g_1), \quad \mathcal{B}(h) := \text{div}_{g_1} h - \frac{1}{2} \nabla^{g_1} \text{tr}_{g_1} h.$$

 \Rightarrow degenerate elliptic equation.
Some ideas of the proof

Previous unique continuation result when the cone is Ricci flat: [D’, 16’]

Here, the convergence holds in the pointwise sense: proof based on Carleman estimates in the spirit of (Donnelly, 99’)

Reminiscent of (Mazzeo, 91’) and (Biquard, 08’) for conformally compact Einstein metrics

In general,

• A priori, $g_i - g_{\text{cone}} = \text{Ric}(g_{\text{cone}}) + O(r^{-4})$ only $\Rightarrow g_2 - g_1 = O(r^{-4})$.

• Assume $\nabla^{g_2} f_2 = \nabla^{g_1} f_1$ at infinity and define $h := g_2 - g_1$:

$$\Delta_{g_1} h + \nabla^{g_1}_{\nabla^{g_1} f_1} h = R[h] + \mathcal{L}_{B(h)}(g_1), \quad \mathcal{B}(h) := \text{div}_{g_1} h - \frac{1}{2} \nabla^{g_1} \text{tr}_{g_1} h.$$

\Rightarrow degenerate elliptic equation.

• $\Delta_{g_1} + \nabla^{g_1}_{\nabla^{g_1} f_1}$ is asymptotic to $(\Delta_{g_{\text{cone}}} + \frac{1}{2} r \partial_r)$ and conjugate to a harmonic oscillator.
Some ideas of the proof

Previous unique continuation result when the cone is Ricci flat: \([D', 16']\)

Here, the convergence holds in the pointwise sense: proof based on Carleman estimates in the spirit of (Donnelly, 99’)

Reminiscent of (Mazzeo, 91’) and (Biquard, 08’) for conformally compact Einstein metrics

In general,

- A priori, \(g_i - g_{\text{cone}} = \text{Ric}(g_{\text{cone}}) + O(r^{-4})\) only \(\Rightarrow g_2 - g_1 = O(r^{-4})\).

- Assume \(\nabla^{g_2} f_2 = \nabla^{g_1} f_1\) at infinity and define \(h := g_2 - g_1:\)

\[
\Delta_{g_1} h + \nabla^{g_1} \nabla_{g_1} f_1 h = R[h] + \mathcal{L}_{\mathcal{B}(h)}(g_1), \quad \mathcal{B}(h) := \text{div}_{g_1} h - \frac{1}{2} \nabla^{g_1} \text{tr}_{g_1} h.
\]

\(\Rightarrow\) degenerate elliptic equation.

- \(\Delta_{g_1} + \nabla^{g_1} \nabla_{g_1} f_1\) is asymptotic to \((\Delta_{g_{\text{cone}}} + \frac{1}{2} r \partial_r)\) and conjugate to a harmonic oscillator.

- (Kotschwar, 17’) If \(h(t) := t \varphi_t^*(g_2 - g_1), \mathcal{B}(h(t))\) satisfies an ODE, i.e.

\[
\nabla^{g_1} \nabla_{g_1} f_1 \mathcal{B}(h) - \frac{\mathcal{B}(h)}{2} = R[h].
\]

Based on Bianchi identity: \(\mathcal{B}(\text{Ric}(g_i)) = 0\).
Some ideas of the proof

- Following (Bernstein, 17'): use of a frequency function associated to $h = g_2 - g_1$:

$$N(R) := R \frac{\int_{r \geq R} |\nabla \hat{h}|^2 r^{-2n} e^{-\frac{r^2}{4}} \, d\mu_g}{\int_{r=R} |\hat{h}|^2 r^{-2n} e^{-\frac{r^2}{4}} \, d\sigma_g}, \quad \hat{h} := r^n e^{\frac{r^2}{4}} h.$$
Some ideas of the proof

- Following (Bernstein, 17′): use of a frequency function associated to \(h = g_2 - g_1 \):

\[
N(R) := R \frac{\int_{r \geq R} |\nabla \hat{h}|^2 r^{-2n} e^{-\frac{r^2}{4}} \, d\mu_g}{\int_{r = R} |\hat{h}|^2 r^{-2n} e^{-\frac{r^2}{4}} \, d\sigma_g}, \quad \hat{h} := r^n e^{\frac{r^2}{4}} h.
\]

- Based on ideas of (Almgren, 70’s) and (Garofalo-Lin, 90’s) on unique continuation results for the laplacian.
Some ideas of the proof

- Following (Bernstein, 17′): use of a frequency function associated to $h = g_2 - g_1$:

$$N(R) := R \frac{\int_{r \geq R} |\nabla \hat{h}|^2 r^{-2n} e^{-\frac{r^2}{4}} \, d\mu_g}{\int_{r = R} |\hat{h}|^2 r^{-2n} e^{-\frac{r^2}{4}} \, d\sigma_g}, \quad \hat{h} := r^n e^{\frac{r^2}{4}} h.$$

- Based on ideas of (Almgren, 70’s) and (Garofalo-Lin, 90’s) on unique continuation results for the laplacian.

- Ideally, $N(R) = O(R^{-2})$ and N is decreasing.
Some ideas of the proof

- Following (Bernstein, 17′): use of a frequency function associated to \(h = g_2 - g_1 \):

\[
N(R) := R \frac{\int_{r \geq R} |\nabla \hat{h}|^2 r^{-2n} e^{-\frac{r^2}{4}} \, d\mu_g}{\int_{r = R} \hat{h}^2 r^{-2n} e^{-\frac{r^2}{4}} \, d\sigma_g}, \quad \hat{h} := r^n e^\frac{r^2}{4} h.
\]

- Based on ideas of (Almgren, 70’s) and (Garofalo-Lin, 90’s) on unique continuation results for the laplacian.

- Ideally, \(N(R) = O(R^{-2}) \) and \(N \) is decreasing.

- Here we get for \(\varepsilon \in (0, 1) \): \(N(R) = O_\varepsilon(R^{-2+\varepsilon}) \) and \(N \) is almost decreasing.
Some ideas of the proof

- Following (Bernstein, 17\弃'): use of a frequency function associated to \(h = g_2 - g_1 \):

\[
N(R) := R \frac{\int_{r \geq R} |\nabla \hat{h}|^2 r^{-2n} e^{-\frac{r^2}{4}} \, d\mu_g}{\int_{r = R} |\hat{h}|^2 r^{-2n} e^{-\frac{r^2}{4}} \, d\sigma_g}, \quad \hat{h} := r^n e^{\frac{r^2}{4}} h.
\]

- Based on ideas of (Almgren, 70's) and (Garofalo-Lin, 90's) on unique continuation results for the laplacian.

- Ideally, \(N(R) = O(R^{-2}) \) and \(N \) is decreasing.

- Here we get for \(\varepsilon \in (0, 1) \): \(N(R) = O_\varepsilon (R^{-2+\varepsilon}) \) and \(N \) is almost decreasing:

\[
\text{if } B(R) := \int_{r = R} |\hat{h}|^2,
\]

\[
\frac{d}{dR} R^{1-n} B(R) = O_\varepsilon (R^{-3+\varepsilon}) R^{1-n} B(R),
\]

\[
\int_{r \geq R} |\nabla \hat{h}|^2 r^{-2n} e^{-\frac{r^2}{4}} \, d\mu_g = N(R)B(R)R^{-2n-1}e^{-\frac{R^2}{4}}.
\]
Application: existence of a relative entropy

Based on [Feldman-Ilmanen-Ni, 05'],

Theorem (D’-Schulze, 21')

Let $\left(M^n, g_i, \nabla g_i, f_i \right)$, $i = 1, 2$ be two complete expanding gradient Ricci solitons coming out of the same cone $\left(C(\mathbb{S}^n), g_C := dr^2 + r^2 g_{\mathbb{S}^n}, r^2 \partial_r \right)$ over a smooth link $\left(\mathbb{S}^n, g_{\mathbb{S}^n} \right)$.

Then the following limit exists for all $t > 0$ and is constant in time:

$$W (\left. g_2 \right|_{t}, g_1 \right|_{t}) := \lim_{R \to +\infty} \left(\int f_2 (t) \leq R e^{f_2 (t)} (4\pi t)^{-\frac{n}{2}} d\mu_{g_2 (t)} - \int f_1 (t) \leq R e^{f_1 (t)} (4\pi t)^{-\frac{n}{2}} d\mu_{g_1 (t)} \right).$$

Relative entropy developed for the mean curvature flow: [D’-Schulze, 19′], [Bernstein-Wang, 19′].

Improper integral:

$$\left(\partial_t + \Delta g(t) - R g(t) \right) e^{f(t)} (4\pi t)^{-\frac{n}{2}} = 0,$$

$$f(t) := \phi^* t f.$$

Hope: generic uniqueness of expanders with zero relative entropy coming out of a cone.

True for expanders of the mean curvature flow: [D’-Schulze, 19′].

Joint work with Felix Schulze (Warwick University)
Application: existence of a relative entropy

Based on [Feldman-Ilmanen-Ni, 05'],

Theorem (D'-Schulze, 21')

Let \((M^n, g_i, \nabla g_i f_i), i = 1, 2\) be two complete expanding gradient Ricci solitons coming out of the same cone \((C(S), g_C := dr^2 + r^2 g_S, \frac{r}{2} \partial_r)\) over a smooth link \((S, g_S)\).
Application: existence of a relative entropy

Based on [Feldman-Ilmanen-Ni, 05'],

Theorem (D’-Schulze, 21’)

Let \((M^n, g_i, \nabla g_i f_i)\), \(i = 1, 2\) be two **complete** expanding gradient Ricci solitons coming out of the same cone \((C(S), g_C := dr^2 + r^2 g_S, \frac{r}{2} \partial_r)\) over a smooth link \((S, g_S)\).

Then the following limit exists for all \(t > 0\) and is constant in time:

\[
\mathcal{W}(g_2(t), g_1(t)) := \lim_{R \to +\infty} \left(\int_{f_2(t) \leq R} \frac{e^{f_2(t)}}{(4\pi t)^{n/2}} d\mu_{g_2(t)} - \int_{f_1(t) \leq R} \frac{e^{f_1(t)}}{(4\pi t)^{n/2}} d\mu_{g_1(t)} \right).
\]
Application: existence of a relative entropy

Based on [Feldman-Ilmanen-Ni, 05'],

Theorem (D'-Schulze, 21')

Let \((M^n, g_i, \nabla g_i f_i), i = 1, 2\) be two complete expanding gradient Ricci solitons coming out of the same cone \((C(S), g_C := dr^2 + r^2 g_S, \frac{r}{2} \partial_r)\) over a smooth link \((S, g_S)\).

Then the following limit exists for all \(t > 0\) and is constant in time:

\[
\mathcal{W}(g_2(t), g_1(t)) := \lim_{R \to +\infty} \left(\int_{f_2(t) \leq R} \frac{e^{f_2(t)}}{(4\pi t)^{n/2}} d\mu_{g_2(t)} - \int_{f_1(t) \leq R} \frac{e^{f_1(t)}}{(4\pi t)^{n/2}} d\mu_{g_1(t)} \right).
\]

Relative entropy developed for the mean curvature flow: [D'-Schulze, 19'], [Bernstein-Wang, 19'].

Joint work with Felix Schulze (Warwick University)
Application: existence of a relative entropy

Based on [Feldman-IImanen-Ni, 05'],

Theorem (D’-Schulze, 21’)

Let \((M^n, g_i, \nabla g_i f_i), i = 1, 2\) be two **complete** expanding gradient Ricci solitons coming out of the same cone \((C(S), g_C := dr^2 + r^2 g_S, \frac{r}{2} \partial_r)\) over a smooth link \((S, g_S)\).

Then the following limit exists for all \(t > 0\) and is constant in time:

\[
\mathcal{W}(g_2(t), g_1(t)) := \lim_{R \to +\infty} \left(\int_{f_2(t) \leq R} \frac{e^{f_2(t)}}{(4 \pi t)^{n/2}} d\mu_{g_2(t)} - \int_{f_1(t) \leq R} \frac{e^{f_1(t)}}{(4 \pi t)^{n/2}} d\mu_{g_1(t)} \right).
\]

Relative entropy developed for the mean curvature flow: [D’-Schulze, 19’], [Bernstein-Wang, 19’].

Improper integral:
Based on [Feldman-Ilmanen-Ni, 05'],

Theorem (D'-Schulze, 21')

Let \((M^n, g_i, \nabla g_i f_i), i = 1, 2\) be two complete expanding gradient Ricci solitons coming out of the same cone \((C(S), g_C := dr^2 + r^2 g_S, \frac{r}{2} \partial_r)\) over a smooth link \((S, g_S)\).

Then the following limit exists for all \(t > 0\) and is constant in time:

\[
\mathcal{W}(g_2(t), g_1(t)) := \lim_{R \to +\infty} \left(\int_{f_2(t) \leq R} \frac{e^{f_2(t)}}{(4\pi t)^{\frac{n}{2}}} \, d\mu_{g_2}(t) - \int_{f_1(t) \leq R} \frac{e^{f_1(t)}}{(4\pi t)^{\frac{n}{2}}} \, d\mu_{g_1}(t) \right).
\]

Relative entropy developed for the mean curvature flow: [D'-Schulze, 19'], [Bernstein-Wang, 19'].

Improper integral:

\[
(\partial_t + \Delta_{g(t)} - R_{g(t)}) \frac{e^f(t)}{(4\pi t)^{\frac{n}{2}}} = 0, \quad f(t) := \varphi^*_t f.
\]
Application: existence of a relative entropy

Based on [Feldman-Ilmanen-Ni, 05'],

Theorem (D'-Schulze, 21')

Let \((M^n, g_i, \nabla g_i f_i)\), \(i = 1, 2\) be two complete expanding gradient Ricci solitons coming out of the same cone \((C(S), g_C := dr^2 + r^2 g_S, \frac{r}{2} \partial_r)\) over a smooth link \((S, g_S)\).

Then the following limit exists for all \(t > 0\) and is constant in time:

\[
\mathcal{W}(g_2(t), g_1(t)) := \lim_{R \to +\infty} \left(\int_{f_2(t) \leq R} \frac{e^{f_2(t)}}{(4\pi t)^{\frac{n}{2}}} \, d\mu_{g_2(t)} - \int_{f_1(t) \leq R} \frac{e^{f_1(t)}}{(4\pi t)^{\frac{n}{2}}} \, d\mu_{g_1(t)} \right).
\]

Relative entropy developed for the mean curvature flow: [D'-Schulze, 19'], [Bernstein-Wang, 19'].

Improper integral:

\[
(\partial_t + \Delta_g(t) - R_g(t)) \frac{e^f(t)}{(4\pi t)^{\frac{n}{2}}} = 0, \quad f(t) := \varphi_t^* f.
\]

Hope: generic uniqueness of expanders with zero relative entropy coming out of a cone.

Joint work with Felix Schulze (Warwick University)
Application: existence of a relative entropy

Based on [Feldman-Ilmanen-Ni, 05'],

Theorem (D'-Schulze, 21')

Let \((M^n, g_i, \nabla g_i f_i), i = 1, 2\) be two **complete** expanding gradient Ricci solitons coming out of the same cone \((C(S), g_C := dr^2 + r^2 g_S, \frac{r}{2} \partial_r)\) over a smooth link \((S, g_S)\).

Then the following limit exists for all \(t > 0\) and is constant in time:

\[
\mathcal{W}(g_2(t), g_1(t)) := \lim_{R \to +\infty} \left(\int_{f_2(t) \leq R} \frac{e^{f_2(t)}}{(4 \pi t)^{n/2}} d\mu_{g_2(t)} - \int_{f_1(t) \leq R} \frac{e^{f_1(t)}}{(4 \pi t)^{n/2}} d\mu_{g_1(t)} \right).
\]

Relative entropy developed for the mean curvature flow: [D'-Schulze, 19'], [Bernstein-Wang, 19'].

Improper integral:

\[
(\partial_t + \Delta_{g(t)} - R_{g(t)}) \frac{e^{f(t)}}{(4 \pi t)^{n/2}} = 0, \quad f(t) := \varphi_t^* f.
\]

Hope: generic uniqueness of expanders with zero relative entropy coming out of a cone.

True for expanders of the mean curvature flow: [D'-Schulze, 19']
Thanks!